\qquad

Partner \qquad Period \qquad

GRAPH ANALYSIS LAB 1

Introduction : Constructing and interpreting graphs are integral parts of any Earth Science course. This section presents a review of graphing with emphasis on the rate of change.

Objective: You will review graph construction and interpretation in this lab.
VOCABULARY: Define the following terms prior starting this lab

Rate of change:

Direct relationship:

Inverse (Indirect) relationship:

Dynamic Equilibrium :
\qquad
PART A: Base your answers to the following questions on Graph A. It represents the flight of two weather balloons that were released from different locations.

1. Was the altitude of the balloons increasing or decreasing as shown by lines A and B ?
2. During the first four minutes (time 0 to time 4) how many meters did A rise?
3. During the first four minutes (time 0 to time 4) how many meters did B rise?
4. During the first four minutes, what was the rate of increase for the balloon represented by Line A?
5. During the first four minutes, what was the rate of increase for the balloon represented by Line B ?
6. What was the rate of change along line A from time 4 minutes to time 8 minutes?
7. What was the rate of change along line B from time 4 minutes to time 8 minutes?
8. Do lines A and B show a direct or an inverse relationship between altitude and time?

PART B: A cup of hot water was left standing on a lab table. Temperature was measured and recorded at one-minute intervals. Plot the given data on Graph B. Be sure to completely label each axis. Answer the questions on the Report Sheet. Note: Time is in minutes and temperature is in degrees Celsius.

Time (min)	0	1	2	3	4	5	6	7	8
Temp ${ }^{\circ} \mathrm{C}$	36.0	32.5	30.5	29.0	28.0	27.0	26.0	25.5	24.5

Time (min)	9	10	11	12	13	14	15
Temp ${ }^{\circ} \mathrm{C}$	24.0	23.5	23.2	23.0	23.0	23.0	23.0

TIME (MIN.)

1. Did temperature increase or decrease with time?
2. Calculate the rate of temperature change from time 0 to time 4 .
3. Calculate the rate of temperature change from time 4 to time 8 .
4. Does the graph show a direct or inverse relationship?
5. Is temperature a dependent or independent variable?

PART C: Base your answers to the following questions on Graph C and your knowledge of density.

The mass \& volume for 5 samples of the mineral pyrite.

1. According to graph C , what is the density of pyrite? \qquad
2. If a sample of pyrite has a volume of $50 \mathrm{~cm}^{3}$, what would be its mass? \qquad
3. The density of pyrite and the density of water $\left(1.0 \mathrm{~g} / \mathrm{cm}^{3}\right)$ were plotted on which diagram below best represents how the graph should appear? \qquad

4. A mineral expands (increasing its volume) when heated. Which graph best represents the relationship between change in density and change in temperature when that mineral is heated? \qquad

5. A student calculates the densities of five different pieces of aluminum, each having a different volume. Which graph best represents this relationship? \qquad

Discussion Questions:

1. In Part A, what happened to the rate of increase along line A from time 0 to time 8 ?
2. In Part A, what happened to the rate of increase along line B from time 0 to 8 ?
3. What general appearance does a graph line have if the dependent variable does not change with time?

Challenge questions:

1. Draw a graph showing an inverse relationship between two variables where the rate of change is increasing. Label each axis appropriately with "independent variable" and "dependent variable."
2. Draw a two-line graph in which line " A " shows a greater constant rate of change than line "B."
3. Explain why plotted data could never be depicted as a vertical line on a line graph.
