## ©Nassau BOCES

Name\_\_\_\_\_

Date\_\_\_\_

## Activity: Temperature Field Map

**Objective:** The objective of this activity is to construct an isotherm map and use it to analyze temperature patterns in a room. You will learn to calculate gradient and construct a temperature profile.

#### Vocabulary:

Field Isoline Isotherm Contour Interval Gradient Profile Heat Source Heat Sink

Materials: graph paper, centimeter ruler, pencil, and a red pen

#### Procedure:

The map shows temperatures (in degrees Celciuş) that have been collected in a room. Connect all points of equal value. Use curved lines and make sure that they do not cross.

- a) Identify the inferred position of the heat source by placing a red "X" on the map in the appropriate spot.
- b) Analyze the map and identify the location of the steepest gradient.
   Draw a line connecting the highest isotherm to the lowest isotherm and measure it with the centimeter ruler. Use a conversion scale of 1 cm = 1 meter. Calculate the gradient. Show all work.
- c) Analyze the map and identify the location of the lowest gradient. Draw a line connecting the highest isotherm to the lowest isotherm and measure this new distance with the centimeter ruler. Use the same conversion scale. Calculate the gradient. Show all work.
- d) Draw a horizontal reference line from the left wall through the location of the inferred heat source all the way to the right wall. Using this line as a reference, construct a profile of this temperature field.





3)

## **©Nassau BOCES**

| Gradient Calculations:                             |                 |
|----------------------------------------------------|-----------------|
| Highest Gradient                                   | Lowest Gradient |
| Difference in Temperature                          |                 |
| Distance (in meters)                               |                 |
|                                                    |                 |
| Gradient Formula:                                  |                 |
| Cubatitutions                                      |                 |
| Substitutions:                                     |                 |
|                                                    |                 |
| Calculated Gradient<br>(include appropriate units) |                 |

 $\sim 2$ 

Base your answers to questions 1 and 2 on the temperature field map below. The map shows temperature readings ( $^{\circ}$ C) recorded by students in a science classroom. The readings were taken at the same time at floor level. Temperature readings for points A and B are labeled on the map.



On the temperature field map, use solid lines to draw the 18°C, 20°C, and 22°C isotherms. Isotherms must extend to the boundary of the map. Label each isotherm to indicate its temperature.

2. Determine the temperature gradient from point A to point B by following the directions below.

*a* Write the equation used to determine the gradient.

- # 1

b Substitute values from the field map into the equation.

c Solve the equation and label the answer with the proper units.

Base your answers to questions 3 and 4 on the temperature field map below. the map shows 25 measurements (in  $^{\circ}$ C) that were made in a temperature field and recorded as shown. The dots represent the exact location of the measurements. A and B are locations within the field.

### Temperature Field Map (°C)

| 1    |                              |                                                                                                             | ·                                         |
|------|------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| • 24 | • 25                         | A<br>• 27                                                                                                   | •26                                       |
| • 24 | • 25                         | • 26                                                                                                        | •26                                       |
| . 23 | • 24                         | <b>•</b> 25                                                                                                 | •25                                       |
| . 22 | <b>B</b> <sub>•</sub> 24     | <b>.</b> 24                                                                                                 | <b>.</b> 24                               |
| . 22 | • <sup>21</sup>              | • <sup>22</sup>                                                                                             | <b>_</b> 22                               |
| 1.0  | 2.0                          | 3.0<br>                                                                                                     | 4.0                                       |
|      | • 24<br>• 23<br>• 22<br>• 22 | <ul> <li>24 . 25</li> <li>23 . 24</li> <li>22 B. 24</li> <li>22 . 21</li> <li>1.0 2.0</li> <li>1</li> </ul> | . 22 <b>B</b> . 24 . 24<br>. 22 . 21 . 22 |

3. On the temperature field map above, draw three isotherms: the 23 °C isotherm, the 24 °C isotherm, and the 25 °C isotherm.

4. Calculate the temperature gradient between locations A and B on the temperature field map, following the directions below.

a Write the equation for the gradient.

b Substitute data from the map into the equation.

c Calculate the gradient and label it with the

| 1) | Define Field –                                                         |
|----|------------------------------------------------------------------------|
| 2) | How is the heat source identified?                                     |
| 3) | What is the contour (isoline) interval for this map. How can you tell? |
|    |                                                                        |
| 4) | Are there temperature values between the lines (isotherms)? Explain    |
| 5) | Why can't isolines ever cross?                                         |
| 6) | How do isolines indicate differences in gradient?                      |
| 7) | How is a profile constructed? Outline a procedure.                     |
|    |                                                                        |
| 8) | How does the profile help in interpreting field maps?                  |

•

4

# Temperature Field Map lab—CHALLENGE QUESTIONS

The field map below shows temperature readings in Fahrenheit degrees for 41 cities. Draw isotherms at  $5^{\circ}$  intervals beginning with  $25^{\circ}$ . Be sure to label both ends of each isotherm. Then create a profile of the field from point A to B.

